

Available online at www.sciencedirect.com

Progress in Natural Science

Progress in Natural Science 18 (2008) 323-324

Short communication

Unramified extensions of quadratic fields

Wei Li*, Dong Yang, Xianke Zhang

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received 10 January 2007; received in revised form 14 April 2007; accepted 26 November 2007

Abstract

Let K be a global quadratic field, then every unramified abelian extension of K is proved to be absolutely Galois when K is a number field or under some natural conditions when K is a function field. The absolute Galois group is also determined explicitly. © 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Keywords: Global quadratic fields; Unramified extensions

1. Statement of main theorems

Let *K* be a quadratic global field. When *K* is a number field, a finite extension *L* of *K* is called unramified if it is unramified at all the primes of *K*. It is well known that every unramified cyclic cubic extension of *K* is Galois over \mathbb{Q} with the Galois group isomorphic to S_3 , see [3] for example. In this paper, we study general unramified abelian extensions of *K*. In the number field case, we have the following theorem:

Theorem 1. Let K be a quadratic number field and L be an unramified abelian extension of K, then L is Galois over \mathbb{Q} . Assume that $Gal(K/\mathbb{Q}) = \langle \overline{\sigma} \rangle$, $Gal(L/K) = G_0$, $Gal(L/\mathbb{Q}) = G$ and fix an extension of $\overline{\sigma}$ to G denoted by σ , then G is the semi-direct product of G_0 and $\langle \overline{\sigma} \rangle$ determined by $\sigma^2 = 1$ and $\sigma g \sigma^{-1} = g^{-1}$ for all $g \in G_0$. In particular, when L is cyclic of degree n over K, $Gal(L/\mathbb{Q})$ is isomorphic to the dihedral group D_n .

When K is a function field with constant field \mathbb{F}_q , let $k = \mathbb{F}_q(t)$ be its underlying rational function field and S' a finite set of primes of k. Denote by $d_{S'}$ the greatest common divisor of the elements in $\{\deg P \mid P \in S'\}$.

For any finite set S of primes of K, we say a finite extension L of K is unramified with respect to S if it is unramified at all the primes of K and is split completely at S. When S is stable under Gal(K/k), S is the extension of S' in K for some S'. In this case, we also denote d'_S as d_S . Then we have:

Case 1. S is nonempty.

Theorem 2. Let K be a quadratic function field and S a nonempty finite set of primes of K which is stable under Gal(K/k). If $d_S = 1$, then every abelian extension L of K, which is unramified with respect to S, is Galois over k. Assume furthermore that $Gal(K/k) = \langle \bar{\sigma} \rangle$, $Gal(L/K) = G_0$, Gal(L/k) = G and fix an extension of $\bar{\sigma}$ to G denoted by σ , then G is the semi-direct product of G_0 and $\langle \bar{\sigma} \rangle$ determined by $\sigma^2 = 1$ and $\sigma g \sigma^{-1} = g^{-1}$ for all $g \in G_0$.

Case 2. S is empty.

Theorem 3. Notations are the same as above. Denote by J_K the idele group of K and H the subgroup of J_K which contains K^{\times} corresponding to L, respectively. Let $\alpha \in H$ be an idele whose corresponding divisor has the minimal degree. Then L/k is Galois if and only if $\alpha^{\bar{\sigma}} \in H$. Furthermore, Gal(L/k)is the semi-direct product of G_0 and $\langle \bar{\sigma} \rangle$ determined by $\sigma^2 = 1$ and $\sigma g \sigma^{-1} = g^{-1}$ for all $g \in G_0$.

1002-0071/\$ - see front matter © 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved. doi:10.1016/j.pnsc.2007.11.005

^{*} Corresponding author. Tel.: +86 13693564264; fax: +86 10 62785847. *E-mail address:* liwei97@mails.tsinghua.edu.cn (W. Li).

2. Proof of the theorems

2.1. Proof of Theorem 1

Proof. Denote by \mathcal{I} and \mathcal{P} the group of fractional ideals and the group of principal ideals of *K*, respectively. By class field theory (see chapter 7 of [1]), there is a unique subgroup \mathcal{J} of \mathcal{I} containing \mathcal{P} corresponding to *L*, i.e. *L* is the class field of \mathcal{J} . It is easy to prove that *L* is absolutely Galois if and only if $\mathcal{J} = \overline{\sigma} \mathcal{J}$ (see Theorem 18.13 of [2]). Note that $\overline{\sigma}\mathcal{I} = \mathcal{I}$ and $\overline{\sigma}\mathcal{P} = \mathcal{P}$, so to prove *L* is absolutely Galois it suffices to prove that

 $\bar{\sigma}(\mathcal{J}/\mathcal{P}) = \mathcal{J}/\mathcal{P}$

by the second isomorphism theorem.

Let \wp be a prime ideal of K over a rational prime p. Then

$$\bar{\sigma}\wp = \wp = (p)$$
 or $\bar{\sigma}\wp \cdot \wp = (p)$.

so

 $\bar{\sigma}\wp = \wp^{-1}$ in \mathcal{I}/\mathcal{P} ,

i.e. $\bar{\sigma}$ is just the involution which takes an element of \mathcal{I}/\mathcal{P} to its inverse. Then it is obvious

 $\bar{\sigma}(\mathcal{J}/\mathcal{P}) = \mathcal{J}/\mathcal{P}.$

since \mathcal{J}/\mathcal{P} is a group. Hence L is Galois over \mathbb{Q} .

For any $g \in G_0$, assume that (I, L/K) = g for some $I \in \mathcal{J}$. Then $\sigma g \sigma^{-1} = (\overline{\sigma}I, L/K) = (I^{-1}, L/K) = g^{-1}$. So we need only to show that $\sigma^2 = 1$. Let *H* be the Hilbert class field of *K*, it is sufficient to show that $\sigma^2 = 1$ in $Gal(H/\mathbb{Q})$. Let $\sigma^2 = g_0$ in Gal(H/K), then $\sigma^4 = \sigma g_0 \sigma^{-1} \sigma^2 =$ $g_0^{-1}\sigma^2 = 1$. Assume that $g_0 \neq 1$, i.e. g_0 is of order 2, then we can take an unramified cyclic extension L of degree 2^r over K such that $g_0 \neq 1$ in $G_0 = Gal(L/K)$ by the direct sum decomposition of Gal(H/K), here r is some positive integer. For each $g \in G_0$, σg is also an extension of $\bar{\sigma}$ to G_0 and $\sigma g \sigma g = \sigma g \sigma^{-1} \sigma^2 g = \sigma^2 = g_0$. So, g_0 is the unique element of order 2 in $Gal(L/\mathbb{Q})$. For any rational prime p ramified in K, the ramification index of p in L/\mathbb{Q} is 2 obviously. Let \mathfrak{P} be a prime ideal of L over p, then the inertia group of \mathfrak{P} is of order 2, hence must be generated by g_0 . This is impossible since K is fixed by g_0 . So σ must be of order 2. Thus we complete the proof. \Box

2.2. Proof of Theorem 2

Proof. Let $\mathcal{O}_S(K)$ be the set of elements of K which are regular outside S. When S is nonempty, $\mathcal{O}_S(K)$ is a Dedekind domain and denote by $Cl_S(K)$ its ideal class group. In [4], Rosen proved there existed a maximal abelian extension H of K which is unramified with respect to S such that $Cl_S(K) \cong Gal(H/K)$ under the reciprocity map. Since S is stable under Gal(K/k), S can be viewed as

a set of primes of k. Hence we can define $\mathcal{O}_S(k)$ and $Cl_S(k)$ too. It is easy to see that $\mathcal{O}_S(K)$ is the integral closure of $\mathcal{O}_S(k)$ in K. By Prop. 14.1 in [5], we have the class number of $\mathcal{O}_S(k)$ is d_S , hence is 1 under our assumption. Therefore, the problem is reduced to the same case as in number fields. Since all the left proofs are the same, we omit them here. \Box

2.3. Proof of Theorem 3

Proof. Let J_K^1 be the group of ideles whose corresponding divisors are of degree 0 and $H^1 = H \cap J_K^1$. For each $\gamma \in H$, $\gamma \alpha^i$ must lie in H^1 for some integer *i*. Hence $H = H^1 \times \langle \alpha \rangle$. Let $Cl^0(K)$ be the group of divisor classes of degree 0 of *K*, it is easy to see that $Cl^0(K) \cong J_K^1/K^{\times}U_K$, where U_K is the group of unit ideles. Since $Cl^0(k)$ is trivial, Gal(K/k) acts on $Cl^0(K)$ as a convolution. Hence H^1 is stable under Gal(K/k) by the same reasoning as in the Proof of Theorem 1. On the other hand, L/k is Galois if and only if $\overline{\sigma}H = H$. Then this is equivalent to require that $\alpha^{\overline{\sigma}} \in H$. If we assume that L/k is Galois, then the determination of Gal(L/k) is the same as above. Thus we finish the proof. \Box

Remark. Let *L* be an unramified cyclic extension of degree 2^r over a quadratic number field *K*. When r = 1, it is the direct consequence of genus theory that $Gal(L/\mathbb{Q})$ is the Klein group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. When r = 2, one can exclude that $Gal(L/\mathbb{Q})$ is the Hamilton quaternion group by genus theory too, however, not so directly. When r > 2, genus theory does not give the information of $Gal(L/\mathbb{Q})$. So, our results are independent of genus theory. It is easy to see that all the results hold for general quadratic extensions K/k of global fields such that Cl(k) or $Cl^0(k)$ is trivial.

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 10131010).

References

- [1] Artin E, Tate J. Class field theory. New York: Benjamin; 1967.
- [2] Cohn H. A classical invitation to algebraic numbers and class fields. New York: Springer-Verlag; 1978.
- [3] Kishi Y, Miyake K. Parametrization of the quadratic fields whose class numbers are divisible by three. J Number Theory 2000;80:209–17.
- [4] Rosen M. The Hilbert class field in function fields. Expos Math 1987;5:365–78.
- [5] Rosen M. Number theory in function fields. New York: Springer, 2002.