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Unramified extensions of quadratic fields
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Abstract

Let K be a global quadratic field, then every unramified abelian extension of K is proved to be absolutely Galois when K is a number
field or under some natural conditions when K is a function field. The absolute Galois group is also determined explicitly.
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1. Statement of main theorems

Let K be a quadratic global field. When K is a number
field, a finite extension L of K is called unramified if it is
unramified at all the primes of K. It is well known that
every unramified cyclic cubic extension of K is Galois over
Q with the Galois group isomorphic to S3, see [3] for exam-
ple. In this paper, we study general unramified abelian
extensions of K. In the number field case, we have the fol-
lowing theorem:

Theorem 1. Let K be a quadratic number field and L be an

unramified abelian extension of K, then L is Galois over Q.

Assume that GalðK=QÞ ¼ h�ri, GalðL=KÞ ¼ G0,

GalðL=QÞ ¼ G and fix an extension of �r to G denoted by

r, then G is the semi-direct product of G0 and h�ri determined

by r2 ¼ 1 and rgr�1 ¼ g�1 for all g 2 G0. In particular,
when L is cyclic of degree n over K, GalðL=QÞ is isomorphic

to the dihedral group Dn.

When K is a function field with constant field Fq, let
k ¼ FqðtÞ be its underlying rational function field and S0

a finite set of primes of k. Denote by dS0 the greatest
common divisor of the elements in fdeg P j P 2 S0g.

For any finite set S of primes of K, we say a finite exten-
sion L of K is unramified with respect to S if it is unra-
mified at all the primes of K and is split completely at S.
When S is stable under GalðK=kÞ, S is the extension of
S0 in K for some S0. In this case, we also denote d 0S as
dS . Then we have:

Case 1. S is nonempty.

Theorem 2. Let K be a quadratic function field and S a non-

empty finite set of primes of K which is stable under

GalðK=kÞ. If dS ¼ 1, then every abelian extension L of K,

which is unramified with respect to S, is Galois over k.

Assume furthermore that GalðK=kÞ ¼ h�ri, GalðL=KÞ ¼ G0,

GalðL=kÞ ¼ G and fix an extension of �r to G denoted by r,

then G is the semi-direct product of G0 and h�ri determined

by r2 ¼ 1 and rgr�1 ¼ g�1 for all g 2 G0.

Case 2. S is empty.

Theorem 3. Notations are the same as above. Denote by J K

the idele group of K and H the subgroup of J K which contains

K� corresponding to L, respectively. Let a 2 H be an idele

whose corresponding divisor has the minimal degree. Then

L=k is Galois if and only if a�r 2 H . Furthermore, GalðL=kÞ
is the semi-direct product of G0 and h�ri determined by

r2 ¼ 1 and rgr�1 ¼ g�1 for all g 2 G0.
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2. Proof of the theorems

2.1. Proof of Theorem 1

Proof. Denote by I and P the group of fractional ideals
and the group of principal ideals of K, respectively. By class
field theory (see chapter 7 of [1]), there is a unique
subgroup J of I containing P corresponding to L, i.e. L is
the class field of J . It is easy to prove that L is absolutely
Galois if and only if J ¼ �rJ (see Theorem 18.13 of [2]).
Note that �rI ¼ I and �rP ¼ P, so to prove L is absolutely
Galois it suffices to prove that

�rðJ =PÞ ¼ J =P

by the second isomorphism theorem.
Let } be a prime ideal of K over a rational prime p. Then

�r} ¼ } ¼ ðpÞ or �r} � } ¼ ðpÞ:
so

�r} ¼ }�1 in I=P;

i.e. �r is just the involution which takes an element of I=P
to its inverse. Then it is obvious

�rðJ =PÞ ¼ J =P:

since J =P is a group. Hence L is Galois over Q.
For any g 2 G0, assume that ðI ; L=KÞ ¼ g for some

I 2 J . Then rgr�1 ¼ ð�rI ; L=KÞ ¼ ðI�1; L=KÞ ¼ g�1. So we
need only to show that r2 ¼ 1. Let H be the Hilbert class
field of K, it is sufficient to show that r2 ¼ 1 in GalðH=QÞ.

Let r2 ¼ g0 in GalðH=KÞ, then r4 ¼ rg0r
�1r2 ¼

g�1
0 r2 ¼ 1. Assume that g0 6¼ 1, i.e. g0 is of order 2, then

we can take an unramified cyclic extension L of degree 2r

over K such that g0 6¼ 1 in G0 ¼ GalðL=KÞ by the direct
sum decomposition of GalðH=KÞ, here r is some positive
integer. For each g 2 G0, rg is also an extension of �r to
G0 and rgrg ¼ rgr�1r2g ¼ r2 ¼ g0. So, g0 is the unique
element of order 2 in GalðL=QÞ. For any rational prime p

ramified in K, the ramification index of p in L=Q is 2 obvi-
ously. Let P be a prime ideal of L over p, then the inertia
group of P is of order 2, hence must be generated by g0.
This is impossible since K is fixed by g0. So r must be of
order 2. Thus we complete the proof. h

2.2. Proof of Theorem 2

Proof. Let OSðKÞ be the set of elements of K which are
regular outside S. When S is nonempty, OSðKÞ is a
Dedekind domain and denote by ClSðKÞ its ideal class
group. In [4], Rosen proved there existed a maximal
abelian extension H of K which is unramified with respect
to S such that ClSðKÞ ffi GalðH=KÞ under the reciprocity
map. Since S is stable under GalðK=kÞ, S can be viewed as

a set of primes of k. Hence we can define OSðkÞ and ClSðkÞ
too. It is easy to see that OSðKÞ is the integral closure of
OSðkÞ in K. By Prop. 14.1 in [5], we have the class number
of OSðkÞ is dS , hence is 1 under our assumption. Therefore,
the problem is reduced to the same case as in number fields.
Since all the left proofs are the same, we omit them
here. h

2.3. Proof of Theorem 3

Proof. Let J1
K be the group of ideles whose corresponding

divisors are of degree 0 and H1 ¼ H \ J1
K . For each c 2 H ,

cai must lie in H 1 for some integer i. Hence H ¼ H1 � hai.
Let Cl0ðKÞ be the group of divisor classes of degree 0 of K,
it is easy to see that Cl0ðKÞ ffi J1

K=K�U K , where UK is the
group of unit ideles. Since Cl0ðkÞ is trivial, GalðK=kÞ acts
on Cl0ðKÞ as a convolution. Hence H 1 is stable under
GalðK=kÞ by the same reasoning as in the Proof of
Theorem 1. On the other hand, L=k is Galois if and only
if �rH ¼ H . Then this is equivalent to require that a�r 2 H . If
we assume that L=k is Galois, then the determination of
GalðL=kÞ is the same as above. Thus we finish the
proof. h

Remark. Let L be an unramified cyclic extension of
degree 2r over a quadratic number field K. When
r ¼ 1, it is the direct consequence of genus theory that
GalðL=QÞ is the Klein group Z=2Z� Z=2Z. When
r ¼ 2, one can exclude that GalðL=QÞ is the Hamilton
quaternion group by genus theory too, however, not so
directly. When r > 2, genus theory does not give the
information of GalðL=QÞ. So, our results are independent
of genus theory. It is easy to see that all the results hold
for general quadratic extensions K=k of global fields such
that ClðkÞ or Cl0ðkÞ is trivial.
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